"ON THE RECURSIVE SEQUENCE

$$x_{n+1} = \frac{A}{x_n} + \frac{B}{x_{n-1}} \quad ,$$

Thomas KIVENTIDIS Department of Mathematics , University of Thessaloniki 54124 Thessaloniki , Greece

ABSTRACT. Consider the difference equation

$$x_{n+1} = \frac{A}{x_n} + \frac{B}{x_{n-1}}$$
 , $A > 0$, $B > 0$, $n = 0, 1, 2, ...$ (1)

with initial conditions $x_0x_{-1} < 0$, and we find initial points x_{-1} and x_0 for which Eq.(1) in well defined for all $n \ge 0$. If $\{x_n\}$ is such a solution then this is positive or negative after $n \ge n_0$, or alternative sign for n = -1, 0, 1, 2, ... If the solution finely maintains the sign then converges [4]. Eq.(1) has 2-periodic solution with two cycle $\sqrt{B-A}$, $-\sqrt{B-A}$, when $B \in (A, +\infty)$.

We consider the case

$$x_{n+1} = \frac{-1}{x_n} + \frac{B}{x_{n-1}}$$
 , $B > 0$, $n = 0, 1, 2, ...$ (2)

with initial conditions $x_{-1}x_0 < 0$ [2].

We show that every solution of the equation (2), with $x_{-1}x_0 < 0$ is such that $x_nx_{n-1} < 0$, $\forall n \ge 0$ and converges to the periodic two solution $\sqrt{B+1}$, $-\sqrt{B+1}$ (2₀) which is locally asymptotically stable.

Keywords: Difference equation, initial conditions, forward and backward solution, alternating solution, positive (negative) solution, periodic solution, asymptotically stable, unstable, first linear approximation.

AMS 1990 Mathematics Subject Classification: 39A10.

1. INTRODUCTION

We consider the difference equation

$$x_{n+1} = \frac{A}{x_n} + \frac{B}{x_{n-1}}$$
 , $A > 0$, $B > 0$, $n = 0, 1, 2, ...$ (1)

and we assume the initial conditions $x_{-1}x_0$ such that $x_{-1}x_0 < 0$. [2] From the relation $x_{-1}x_0 < 0$ we have

$$x_{-1} < 0$$
, $x_0 > 0$ or $x_{-1} > 0$, $x_0 < 0$,

and

$$x_{I} = \frac{A}{x_{0}} + \frac{B}{x_{-I}} \implies x_{I}x_{0} = A + \frac{Bx_{0}}{x_{-I}}$$

 $\Rightarrow x_1 x_0 < A$, since $x_{-1} x_0 < 0$.

From the relation

$$x_1 x_0 < A$$
, if $Ax_{-1} + Bx_0 \neq 0$,

it follows that

$$0 < x_1 x_0 < A \tag{i_1}
x_1 x_0 < 0 < A \tag{ii_1}$$

or

For n = 1, $x_2 = \frac{A}{x_1} + \frac{B}{x_0} \implies x_2 x_1 = A + \frac{Bx_1}{x_0}$

we have the following two cases:

- if (i_1) is true then $x_2x_1 > 0$,
- if (ii₁) is true then $x_2x_1 < A$.

If $x_2x_1 < A$ is true then it follows (if $Ax_0 + Bx_1 \neq 0$)

$$0 < x_2 x_1 < A \tag{i_2}$$

or
$$x_2x_1 < 0 < A$$
. (ii₂)

For
$$n = 2$$
, $x_3 = \frac{A}{x_2} + \frac{B}{x_1} \implies x_3 x_2 = A + B \frac{x_2}{x_1}$,

we have the following two cases:

- if (i_2) is true then $x_3x_2 > 0$,
- if (ii₂) is true then $x_3x_2 < A$.

If $x_3x_2 < A$ is true then it follows (if $Ax_1 + Bx_2 \neq 0$)

$$0 < x_3 x_2 < A \tag{i_3}$$

or
$$x_3 x_2 < 0 < A$$
. (ii₃)

We continue similarly for x_4 , x_5 ,...

We observe from the above that:

PROPOSITION: Consider the difference equation (1) with $x_{-l}x_0 < 0$, if existy $n_0 \ge 0$ such that $x_{n_0+l}x_{n_0} > 0$ then we shall have $x_{n+l}x_n > 0$, $\forall n \ge n_0$, otherwise we shall have $x_{n+l}x_n < 0$, $\forall n \ge 0$, if $x_n \ne 0$, $\forall n \ge 0$.

2. EXISTENCE OF SOLUTIONS

On note that we have

$$x_1 = \frac{A}{x_0} + \frac{B}{x_{-1}} \implies x_1 x_{-1} = \frac{x_{-1}}{x_0} A + B \implies x_1 x_{-1} < B$$
,

since $x_{-1}x_0 < 0$ from hypothesis.

THEOREM 1: If
$$x_0 > 0$$
, $x_{-1} < -\frac{B}{A}x_0 < 0$ (resp. if $x_0 < 0$, $x_{-1} > -\frac{B}{A}x_0 > 0$) then $x_1 > 0$ (resp. $x_1 < 0$) and we have $x_{n+1}x_n > 0$, $\forall n \ge 0$. Also, if $x_0 > 0$, $-\frac{B}{A}x_0 < x_{-1} < 0$ (resp. if $x_0 < 0$, $0 < x_{-1} < -\frac{B}{A}x_0$) then $x_1 < 0$ (resp. $x_1 > 0$) and we have the statements of the proposition (&1).

Proof

We have
$$x_1 = \frac{A}{x_0} + \frac{B}{x_{-1}} = \frac{Ax_{-1} + Bx_0}{x_0 x_{-1}} > 0$$
 (since $x_0 x_{-1} < 0$) and $0 < x_1 x_0 = A + \frac{Bx_0}{x_{-1}} < A$.

From the proposition (&1) it follows that $x_{n+1}x_n > 0$, $\forall n \ge 0$. Also, from the relation (we can see that $x_1 < 0$)

$$x_1 = \frac{A}{x_0} + \frac{B}{x_{-1}} \implies 0 < x_1 x_{-1} = \frac{A x_{-1}}{x_0} + B < B$$
 and
$$x_2 = \frac{A}{x_1} + \frac{B}{x_0} \quad , \text{ we have}$$

• if
$$x_0 > -\frac{B}{A}x_1 > 0$$
 then $x_1x_2 > 0$ and $x_{n+1}x_n > 0$, $\forall n \ge 1$,

• if
$$0 < x_0 < -\frac{B}{A}x_1$$
 then $x_1x_2 < 0$ and produce the statements of the proposition (&1).

Respectively, from the relation (we can see now that $x_1 > 0$)

$$x_{I} = \frac{A}{x_{0}} + \frac{B}{x_{-I}} \implies 0 < x_{I}x_{-I} = \frac{Ax_{-I}}{x_{0}} + B < B$$
and
$$x_{2} = \frac{A}{x_{I}} + \frac{B}{x_{0}} \quad \text{we have}$$

• if
$$x_0 < -\frac{B}{A}x_1 < 0$$
 then $x_1x_2 > 0$ and $x_{n+1}x_n > 0$, $\forall n \ge 1$,

• if
$$-\frac{B}{A}x_1 < x_0 < 0$$
 then we have $x_1x_2 < 0$ and produce the statements of the proposition (&1).

We have $x_2 > 0$, (or $x_2 < 0$) since $x_1 x_0 < 0$ and $x_0 < \frac{B}{A} x_1 < 0$ (or $-\frac{B}{A} x_1 < x_0 < 0$). We observe that (in the case $x_0 < 0$, $0 < x_{-1} < -\frac{B}{A} x_0$)

$$0 < x_I < \frac{B}{x_{-I}} \implies -\frac{B^2}{Ax_{-I}} < -\frac{B}{A}x_I < 0$$

and if
$$x_{-l}x_0 \le -\frac{B^2}{A} < 0$$
 then $x_0 < -\frac{B}{A}x_1 < 0$ and , must be $x_0 < -\sqrt{B} < 0$ (since $0 < x_{-l} < -\frac{B}{A}x_0$).

On note that
$$-\frac{B}{A}\left(\frac{A}{x_0} + \frac{B}{x_{-1}}\right) < x_0 < 0 \implies -\frac{B}{x_0} - \frac{B^2}{Ax_{-1}} < x_0 < 0$$

from which it follows

$$\frac{B^2}{Ax_{-1}} > -\frac{B}{x_0} > 0 \implies 0 < x_{-1} < -\frac{B}{A}x_0.$$

Thus, the two relations can both hold, respectively. Similarly, we prove the other case.

We shall also prove that $x_n x_{n+1} > 0 \ \forall n \ge n_0$ and $0 < x_n x_{n+1} < A$, $\forall n \ge n_0 + I$, cannot both hold.

Indeed, if $x_n x_{n+1} > 0$, $\forall n \ge n_0$ then we distinguish the following two cases:

• if $x_n > 0$, $x_{n-1} > 0$, $\forall n-1 \ge n_0$ then

$$x_{n+1} = \frac{A}{x_n} + \frac{B}{x_{n-1}} > \frac{A}{x_n} \implies x_n x_{n+1} > A > 0$$
,

• if $x_n < 0$, $x_{n-1} < 0$, $\forall n-1 \ge n_0$ then

$$\begin{aligned} x_{n+l} &= \frac{A}{x_n} + \frac{B}{x_{n-l}} \Longrightarrow -x_{n+l} = \frac{A}{-x_n} + \frac{B}{-x_{n-l}} > \frac{A}{-x_n} \Longrightarrow \\ & (-x_{n+l})(-x_n) > A > 0 \Longrightarrow x_n x_{n+l} > A > 0 \,. \end{aligned}$$

Thus, if $x_n x_{n+1} > 0$, $\forall n \ge n_0$, then $x_n x_{n+1} > A > 0$, $\forall n \ge n_0 + I$, holds.

Conclusions: From the conditions of the Theorem 1 the solution $\{x_n\}$ of the difference equation (1) is defined for all n = 0, 1, 2, ... and we have the statements:

• if n_0 exists such that $x_{n_0+1}x_{n_0} > 0$ then

$$x_{n+1}x_n > 0$$
, $\forall n = n_0$, n_0+1 ,...

which means that the solution has constant sign (positive or negative) for $n \ge n_0$.

• otherwise we have $x_{n+1}x_n < 0$, $\forall n = 0,1,2,...$ which means that the solution has alternative sign for n = -1,0,1,2,... (if $x_n \neq 0$, $\forall n$).

We then have the following statements:

- α) if solution $\{x_n\}$ of Eq.(1) has constant sign then (see[4]) it converges to number $\sqrt{A+B}$ (if positive) or to number $-\sqrt{A+B}$ (if negative), where A>0, B>0.
- β) observe that if B > A > 0 then Eq.(1) has the 2-periodic solution, with two cycle $\sqrt{B-A}$, $-\sqrt{B-A}$.
- γ) one solution $\{x_n\}$ of Eq. (1) can have alternative sign if:

and there is no n_0 such that $x_{n_0+1}x_{n_0} \ge 0$.

On note that if the above alternating solution $\{x_n\}$ of Eq.(1) converges, then it should converge to zero, which is absurd.

3. BACKWARD SOLUTIONS

We consider the difference equation

$$x_{n+1} = \frac{A}{x_n} + \frac{B}{x_{n-1}}$$
 , $A > 0$, $B > 0$, $n = 0$, -1 , -2 ,... (1)'

We have the points

$$n = 0$$
: $x_1 = \frac{A}{x_0} + \frac{B}{x_{-1}}$

$$n = -I:$$
 $x_0 = \frac{A}{x_{-1}} + \frac{B}{x_{-2}} \implies x_0 x_{-2} = \frac{Ax_{-2}}{x_{-1}} + B$

$$n = -2:$$
 $x_{-1} = \frac{A}{x_{-2}} + \frac{B}{x_{-3}} \implies x_{-1}x_{-2} = A + \frac{Bx_{-2}}{x_{-3}}$

• If $x_0 > 0$, $x_{-1} < 0$ (since $x_0 x_{-1} < 0$) then $x_{-2} > 0$ and $0 < x_0 x_{-2} < B$. Since $x_{-1} x_{-2} < 0$ it follows that $x_{-3} < 0$.

From the relation $x_{-2}x_{-3} = A + \frac{Bx_{-3}}{x_{-4}}$,

since $x_{-2} > 0$, $x_{-3} < 0$, it follows $x_{-4} > 0$.

Hence we have the solution $\{x_n\}$, n=0,-1,-2,... of Eq. (1)' with alternative sign.

• If $x_0 < 0$, $x_{-1} > 0$ (since $x_0 x_{-1} < 0$ by hypothesis) then

$$x_{-2} < 0$$
 and $0 < x_0 x_{-2} < B$.

Since $x_{-1}x_{-2} < 0$ it follows $x_{-3} > 0$.

Hence we have the solution $\{x_n\}$, n = 0, -1, -2, ..., of Eq. (1)' with alternative sign

Evidently, this solution of Eq. (1)' with alternative sign cannot converges. When B > A > 0 then Eq. (1)' has the 2-periodic solution with two cycle $\sqrt{B-A}$, $-\sqrt{B-A}$, $B \in (A, +\infty)$.

4. STABILITY

Consider the difference equation

$$x_{n+1} = \frac{-1}{x_n} + \frac{B}{x_{n-1}}$$
 , $B > 0$, $n = 0, 1, 2,$ (2)

We observe that, when $x_{-1}x_0 < 0$ then:

•
$$x_1 = \frac{-1}{x_0} + \frac{B}{x_{-1}} \implies x_{-1}x_1 = \frac{-x_{-1}}{x_0} + B > 0$$

which means that $x_{-i}x_i > 0$,

•
$$x_2 = \frac{-1}{x_1} + \frac{B}{x_0} \implies x_2 x_0 = \frac{-x_0}{x_1} + B > 0$$

which means that $x_2x_0 > 0$, and we find, generally, that $x_nx_{n+1} < 0$, n = 0, 1, 2, ...

It is easy to see that (2) has 2-periodic solution with two cycle $\sqrt{B+1}$, $-\sqrt{B+1}$, B>0 (2₀).

We set

$$f(x,y) = \frac{-1}{x} + \frac{B}{y} \qquad ,$$

then

$$\frac{\partial f}{\partial x} = \frac{I}{x^2}$$
 , $\frac{\partial f}{\partial y} = -\frac{B}{y^2}$.

We have , from the linearized analysis of Eq. (2) in two cycle $\overline{x} = \sqrt{B+1}$, $\overline{y} = -\sqrt{B+1}$, that

$$y_{n+1} - \frac{\partial f}{\partial x}(\overline{x}, \overline{y})y_n - \frac{\partial f}{\partial y}(\overline{x}, \overline{y})y_{n-1} = 0 \quad n = 0, 1, 2, \dots$$

$$\Rightarrow y_{n+1} - \frac{1}{R+1} y_n + \frac{B}{R+1} y_{n-1} = 0 , \quad n = 0, 1, 2, \dots$$
 (3)

where is here

$$p = -\frac{1}{B+1} \qquad , \qquad q = \frac{B}{B+1} \quad , \quad B > 0$$

Then the criterium of asymptotically stability of Eq. (3) ([1])

$$|p| < q + 1 < 2$$

hold .On note that 2-periodic solution of Eq.(2) to go over the zero solution of the first linear approximation (3) which is locally asymptotically stable .

We observe, also, that Eq.(2) has the equilibriums $\sqrt{B-1}$, $-\sqrt{B-1}$, where $B \in (1, +\infty)$.

The first linear approximation about the equilibriums is

$$y_{n+1} - \frac{1}{B-1}y_n + \frac{B}{B-1}y_{n-1} = 0$$
 , $n = 0, 1, 2, ...$ (3)'

and it is not hold the criterium of asympotically stability

$$|p| < q + 1 < 2$$
,

where

$$p = -\frac{1}{B-1} \qquad , \quad q = \frac{B}{B-1} \quad , \quad B \in (1,+\infty) \; .$$

On continue the study of stability of Eq. (3)'.

The characteristic equation of Eq. (3)' is

$$\lambda^2 - \frac{1}{B-1}\lambda + \frac{B}{B-1} = 0 \Longrightarrow (B-1)\lambda^2 - \lambda + B = 0 \tag{4}$$

and has the roots

$$\lambda_1 = \frac{1 + \sqrt{1 - 4B(B - 1)}}{2(B - 1)}$$
, $\lambda_2 = \frac{1 - \sqrt{1 - 4B(B - 1)}}{2(B - 1)}$.

We consider the discrimination $\Delta(B) = -4B^2 + 4B + I$, B > 1:

• if
$$\Delta(B) = 0 \Rightarrow B = \frac{1+\sqrt{2}}{2}$$
 and Eq. (4) has the double root
$$\lambda_1 = \lambda_2 = \frac{1}{\sqrt{2}-1} > 1$$

then instability.

• if
$$B \in \left(I, \frac{1+\sqrt{2}}{3} \right)$$
, when $\Delta(B) > 0$ and $|\lambda_I| > I$, $|\lambda_2| > I$, then instability.

• if
$$B \in \left(\frac{I + \sqrt{2}}{2}, +\infty\right)$$
 when $\Delta(B) < 0$ and the roots of Eq.(4) are complex with modulus r :

— if
$$B = \frac{3}{2}$$
 when $r = \frac{1}{2(B-1)} = 1$, then stability,

—if
$$B > \frac{3}{2}$$
 or $B \in \left(\frac{I + \sqrt{2}}{2}, \frac{3}{2}\right)$ when $r^2 = \frac{B}{B - I} > I$

then instability.

We have, summarily, the results:

- if $B \in \left(1, \frac{3}{2}\right)$ then instability of Eq. (3)' and of Eq. (2) in equilibriums
- if $B = \frac{3}{2}$ then stability of Eq. (3)', without conclusion for Eq. (2).
- if $B > \frac{3}{2}$ then instability of Eq. (3)' and of Eq. (2) in equilibriums.

THEOREM 2: We assume that $\{x_n\}$ is a none equilibrium solution of Eq.(2), with $x_{-1}x_0 < 0$, which defined for all $n \ge 0$.

Then the solution $\{x_n\}$ converges to two cycle $\sqrt{B+1}$, $-\sqrt{B+1}$ (2) of 2-periodic solution of Eq. (2).

Proof

We have show in the introduction that, if for initial conditions x_{-1} , x_0 hold $x_{-1}x_0 < 0$ then $x_n x_{n+1} < 0$, $\forall n \ge 0$ for a solution $\{x_n\}$ of Eq.(2).

We suppose that $x_{2n} > 0$ and $x_{2n+1} < 0$, for n = 0, 1, 2, ...

For $N \ge 0$ let

$$m_N = min\{x_{2N-2}, -x_{2N-1}, x_{2N}, -x_{2N+1}\},$$

$$M_N = max\{x_{2N-2}, -x_{2N-1}, x_{2N}, -x_{2N+1}\}$$
.

It follows from Eq.(2)

$$x_{2n+1} = \frac{-1}{x_{2n}} + \frac{B}{x_{2n-1}}$$
, $n = 0, 1, 2, \dots$ (2.1)

$$x_{2n} = \frac{-1}{x_{2n-1}} + \frac{B}{x_{2n-2}}$$
, $n = 0, 1, 2, \dots$ (2.2)

then

$$x_{2n+2} = \frac{-1}{x_{2n+1}} + \frac{B}{x_{2n}} = \frac{-1}{-\frac{1}{x_{2n}} + \frac{B}{x_{2n-1}}} + \frac{B}{-\frac{1}{x_{2n-1}} + \frac{B}{x_{2n-2}}} , n = 1, 2, \dots$$

The function

$$f(x,y,z) = \frac{-1}{-\frac{1}{x} + \frac{B}{y}} + \frac{B}{-\frac{1}{y} + \frac{B}{z}} = \frac{1}{\frac{1}{x} + \frac{B}{-y}} + \frac{B}{-\frac{1}{y} + \frac{B}{z}}$$

is increasing in x > 0, y < 0, z > 0.

Therefore, for n = N, we obtain

$$x_{2N+2} = \frac{1}{\frac{1}{x_{2N}} + \frac{B}{(-x_{2N-1})}} + \frac{B}{\frac{I}{(-x_{2N-1})} + \frac{B}{x_{2N-2}}} \le \frac{1}{\frac{I}{M_N} + \frac{B}{M_N}} + \frac{B}{\frac{I}{M_N} + \frac{B}{M_N}} = M_N,$$

$$x_{2N+3} = \frac{-1}{x_{2N+2}} + \frac{B}{x_{2N+1}} = \left[\frac{1}{\frac{1}{(-x_{2N+1})} + \frac{B}{x_{2N}}} + \frac{B}{\frac{1}{x_{2N}} + \frac{B}{(-x_{2N-1})}} \right] \ge -M_N$$

$$x_{2N+4} = \frac{-I}{x_{2N+5}} + \frac{B}{x_{2N+2}} = \frac{I}{\frac{I}{x_{2N+2}} + \frac{B}{(-x_{2N+1})}} + \frac{B}{\frac{I}{(-x_{2N+1})} + \frac{B}{x_{2N}}}$$

$$\leq \frac{1}{\frac{1}{M_N} + \frac{B}{M_N}} + \frac{B}{\frac{1}{M_N} + \frac{B}{M_N}} = M_N$$

and by induction $x_{2n} \le M_N$ for $n \ge N$ and $-x_{2n+1} \le M_N$, for $n \ge N$. We prove, similarly, that $x_{2n} \ge m_N$ for $n \ge N$ and $-x_{2n+1} \ge m_N$, for $n \ge N$.

We write the difference equation (2.1) in the form

$$-x_{2n+1} = \frac{1}{x_{2n}} + \frac{B}{-x_{2n-1}} , n = 0, 1, 2, ...$$
 (2.1)

and Eq. (2.2)

$$x_{2n} = \frac{1}{-x_{2n-1}} + \frac{B}{x_{2n-2}}$$
, $n = 0, 1, 2, ...$ (2.2)'

We assume that $x_{2n} > 0$ and $x_{2n+1} < 0$, n = 0, 1, 2, ... then the sequence $\{y_n\}$, where

 $y_n = x_{2k}$, if n = 2k and $y_n = -x_{2k+1}$, if n = 2k+1 is a positive sequence $y_n > 0$, $\forall n \ge 0$ and bounded (since $m_N \le y_n \le M_N$) for $k \ge N$).

From Eqs. (2.1)' and (2.2)' implies that the sequence $\{y_n\}$ is a positive solution of difference equation

$$y_{n+1} = \frac{1}{y_n} + \frac{B}{y_{n-1}}$$
 , $B > 0$, $n = 0, 1, 2, ...$ (2)'

It was shown in [4] (see Theorem) that every positive solution of the difference equation (2)' converges to the positive equilibrium $\sqrt{B+I}$.

Thus, the subsequences of the positive solution $\{y_n\}$ of Eq. (2)' $y_{2k} = x_{2k}$, $k = 0, 1, 2, \dots$ and $y_{2k+1} = -x_{2k+1}$, $k = 0, 1, 2, \dots$ converges, also, the same limit $\sqrt{B+1}$.

Finally, we have show that

$$\lim_{k \to +\infty} x_{2k} = \sqrt{B+1} \qquad \text{and} \qquad \lim_{k \to +\infty} x_{2k+1} = -\sqrt{B+1} \quad .$$

REFERENCES

- 1. V.L. KOCIC and G. LADAS, "Global Behavior of Nonlinear Difference Equations of Higher Order with Applications". Kluwer, Dordrecht, 1993.
- 2. R. DEVAULT, L. GALMINAS, E.J. JANOWSKI and G. LADAS, "On the Recursive Sequence $x_{n+1} = ((A/x_n) + (B/x_{n-1}))$ ", Journal of Difference Equation and Applications, 6, pp. 121 – 125 (2000).
- 3. R. DEVAULT, G. LADAS and S.W. SCHULTZ, "On the recursive sequence $x_{n+l} = \frac{A}{x_n} + \frac{I}{x_{n-2}} \quad ", Proceeding of the AMS, Vol. 126 (1998), \\ pp 3257 3261.$
- 4.CH. PHILOS, I. K. PURNARAS and Y.G. SFICAS, "Glodal attractivity in a nonlinear difference equation", Applied Mathematics and Computers 62 (1994) pp. 249 258.